Part Number Hot Search : 
BRF1045 SFP9630 T54FCT ECG1084 TK16A55D 2012A GP1A21 MC74HC
Product Description
Full Text Search
 

To Download BTS462T Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 BTS 462 T
Smart Power High-Side-Switch
Features * Overload protection * Current limitation * Short circuit protection * Thermal shutdown with restart * Overvoltage protection (including load dump) * Fast demagnetization of inductive loads * Reverse battery protection with external resistor * CMOS compatible input * Loss of GND and loss of Vbb protection * ESD - Protection * Very low standby current Product Summary Overvoltage protection Operating voltage On-state resistance Nominal load current Vbb(AZ) Vbb(on) RON IL(ISO) 41 100 3.5 V m A 5...34 V
P-TO252-5-11
Application
* All types of resistive, inductive and capacitive loads * C compatible power switch for 12 V and 24 V DC applications * Replaces electromechanical relays and discrete circuits
General Description
N channel vertical power FET with charge pump, ground referenced CMOS compatible input, monolithically integrated in Smart SIPMOS technology. Providing embedded protective functions.
Page 1
2004-01-27
BTS 462 T
Block Diagram
+ V bb
Voltage source V Logic
Overvoltage protection
Current limit
Gate protection
Charge pump Level shifter Rectifier
IN
Limit for unclamped ind. loads
OUT
Temperature sensor Load
ESD
Logic
GND
miniPROFET
Signal GND
Load GND
Pin 1 2 3 4 5 TAB
Symbol GND IN Vbb NC OUT Vbb
Function Logic ground Input, activates the power switch in case of logic high signal Positive power supply voltage not connected Output to the load Positive power supply voltage
Pin configuration
Top view
Tab = VBB
1
2
(3)
4
5
GND IN
NC OUT
Page 2
2004-01-27
BTS 462 T Maximum Ratings at Tj = 25C, unless otherwise specified Parameter Supply voltage Supply voltage for full short circuit protection Tj = -40...+150 C Continuous input voltage Load current (Short - circuit current, see page 5) Current through input pin (DC) Operating temperature Storage temperature Power dissipation 1) Inductive load switch-off energy dissipation 1)2) single pulse, (see page 8) Tj =150 C, Vbb = 13.5 V, IL = 1 A Load dump protection 2) VLoadDump3)= VA + VS RI=2, td=400ms, VIN= low or high, VA=13,5V RL = 13.5 Electrostatic discharge voltage (Human Body Model) VESD according to ANSI EOS/ESD - S5.1 - 1993 ESD STM5.1 - 1998 Input pin all other pins Thermal Characteristics junction - case: Thermal resistance @ min. footprint Thermal resistance @ 6 cm 2 cooling area 1) RthJC Rth(JA) Rth(JA) 80 45 3 60 K/W K/W 1 5 75 kV VLoaddump V VIN IL I IN Tj T stg Ptot EAS -10 ... +16 self limited 5 -40 ...+150 -55 ... +150 41.6 4.4 W J A mA C Symbol Vbb Vbb(SC) Value 40 32 Unit V
1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70m thick) copper area for drain connection. PCB is vertical without blown air. (see page 16) 2not subject to production test, specified by design 3V Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 . Supply voltages higher than V bb(AZ) require an external current limit for the GND pin, e.g. with a 150 resistor in GND connection. A resistor for the protection of the input is integrated.
Page 3
2004-01-27
BTS 462 T Electrical Characteristics Parameter and Conditions at Tj = -40...+150C, Vbb = 13,5V, unless otherwise specified Load Switching Capabilities and Characteristics On-state resistance Tj = 25 C, IL = 2 A, V bb = 9...40 V Tj = 150 C Nominal load current; Device on PCB 1) TC = 85 C, VON = 0.5 V Turn-on time RL = 47 Turn-off time RL = 47 Slew rate on RL = 47 Slew rate off RL = 47 Operating Parameters Operating voltage Undervoltage shutdown of charge pump Tj = -40...+85 C Tj = 150 C Undervoltage restart of charge pump Standby current Tj = -40...+85 C, VIN = 0 V Tj = 150 C2) , VIN = 0 V Leakage output current (included in Ibb(off)) VIN = 0 V Operating current VIN = 5 V
1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70m thick) copper area for drain connection. PCB is vertical without blown air. (see page 16) 2higher current due temperature sensor
Symbol min. RON I L(ISO) t on t off dV/dt on -dV/dt off 3.5 -
Values typ. max.
Unit
m 70 140 4.4 90 90 0.8 0.8 100 200 170 230 1.7 1.7 V/s A s
to 90% VOUT to 10% VOUT 10 to 30% VOUT , 70 to 40% V OUT,
Vbb(on) Vbb(under)
5 -
4 0.5
34 4 5.5 5.5
V
Vbb(u cp) Ibb(off)
-
A 10 15 5 1.3 mA
IL(off) IGND
-
Page 4
2004-01-27
BTS 462 T Electrical Characteristics Parameter and Conditions at Tj = -40...+150C, Vbb = 13,5V, unless otherwise specified Protection Functions1) Initial peak short circuit current limit (pin 3 to 5) Tj = -40 C, Vbb = 20 V, tm = 150 s Tj = 25 C Tj = 150 C Repetitive short circuit current limit Tj = Tjt (see timing diagrams) Output clamp (inductive load switch off) at VOUT = Vbb - VON(CL), Ibb = 4 mA Overvoltage protection 2) Ibb = 4 mA Thermal overload trip temperature Thermal hysteresis Reverse Battery Reverse battery 3) Drain-source diode voltage (VOUT > Vbb) -Vbb -VON 600 32 V mV T jt Tjt 150 10 C K Vbb(AZ) 41 VON(CL) I L(SCr) 41 10 47 V I L(SCp) 7 14 20 A Symbol min. Values typ. max. Unit
1Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation . 2 see also VON(CL) in circuit diagram on page 7 3Requires a 150 resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation! Input current has to be limited (see max. ratings page 3).
Page 5
2004-01-27
BTS 462 T Parameter and Conditions at Tj = -40...+150C, Vbb = 13,5V, unless otherwise specified Input Input turn-on threshold voltage (see page 12) Input turn-off threshold voltage (see page 12) Input threshold hysteresis Off state input current (see page 12) VIN = 0.7 V On state input current (see page 12) VIN = 5 V Input resistance (see page 7) RI 1.5 3.5 5 k I IN(on) 3 25 V IN(T) I IN(off) 1 0.3 25 A VIN(T-) 0.8 VIN(T+) 2.2 V Symbol min. Values typ. max. Unit
Page 6
2004-01-27
BTS 462 T Terms
Ibb
V Z V ON
Inductive and overvoltage output clamp
+ V bb
Vbb I IN IN V V bb PROFET OUT
OUT GND
IL
VON
IN R
GND IGND GND VOUT
V ON clamped to 47V typ.
Input circuit (ESD protection)
R IN I
Overvoltage protection of logic part
+ V bb V
Z2
ESD- ZD I GND
I
I
IN
RI L o gic
V
Z1
The use of ESD zener diodes as voltage clamp at DC conditions is not recommended
GND
R GN D
S ignal GND
Reverse battery protection
- V bb
VZ1 =6.1V typ., VZ2 =Vbb(AZ) =47V typ., RI=3.5 k typ., RGND=150
Logic
IN
RI OUT
Power Inverse Diode
GND R GND
Signal GND Power GND
RL
RGND=150, RI=3.5k typ., Temperature protection is not active during inverse current
Page 7
2004-01-27
BTS 462 T GND disconnect Vbb disconnect with charged inductive load
Vbb IN PROFET OUT
Vbb high IN PROFET OUT
GND V bb V IN V GND
GND
V
bb
GND disconnect with GND pull up
Vbb IN PROFET OUT
Inductive Load switch-off energy dissipation
E bb E AS Vbb E Load
GND
V bb
V IN
V GND
=
IN
PROFET
OUT
GND
ZL
{
R L
L
EL
ER
Energy stored in load inductance: EL = 1/2 * L * IL2 While demagnetizing load inductance, the energy dissipated in PROFET is EAS = Ebb + EL - ER = VON(CL) * iL(t) dt, with an approximate solution for RL > 0:
E AS =
IL * R L IL * L ) * ( V b b + | V O U T ( C L )| ) * ln (1 + | V O U T ( C L )| 2 * RL
Page 8
2004-01-27
BTS 462 T Typ. transient thermal impedance ZthJA=f(tp) @ 6cm 2 heatsink area Parameter: D=tp/T
10
2
Typ. transient thermal impedance Z thJA=f(tp) @ min. footprint Parameter: D=tp/T
10 2
K/W
D=0.5 D=0.2
K/W
D=0.5 D=0.2
10 1
10 1
D=0.1 D=0.05 D=0.02
D=0.05 D=0.02 D=0.01
Z thJA
ZthJA
D=0.1
10 0
10 0
D=0.01
10 -1
D=0
10 -1
D=0
10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10
s
10
4
10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10
tp
s
10
4
tp
Typ. on-state resistance RON = f(Tj) ; Vbb = 13,5V ; Vin = high
160
Typ. on-state resistance RON = f(V bb); IL = 0.5A ; V in = high
200
m
m
120
150
RON
RON
150C
100
125
80
100
60
75
25C -40C
40
50
20
25
0 -40 -20
0
20
40
60
80 100 120
C 160
0 0
5
10
15
20
25
30
Tj
Page 9
V Vbb
40
2004-01-27
BTS 462 T Typ. turn on time ton = f(Tj ); RL = 47
160
Typ. turn off time toff = f(Tj); RL = 47
160
32V 9V
s
9V
s
120
13.5V
120
t on
toff
32V
100
100
80
80
60
60
40
40
20
20
0 -40 -20
0
20
40
60
80 100 120
C 160
0 -40 -20
0
20
40
60
80 100 120
C 160
Tj
Tj
Typ. slew rate on dV/dton = f(T j) ; RL = 47
2
Typ. slew rate off dV/dtoff = f(Tj); R L = 47
2
V/s
1.6
V/s
1.6
dV dton
1.4 1.2 1 0.8 0.6 0.4 0.2 0 -40 -20
13.5V 9V 32V
-dV dtoff
1.4 1.2 1 0.8 0.6 0.4 0.2 0 -40 -20
13.5V 9V 32V
0
20
40
60
80 100 120
C 160
0
20
40
60
80 100 120
C 160
Tj
Page 10
Tj
2004-01-27
BTS 462 T Typ. standby current Ibb(off) = f(Tj ) ; Vbb = 32V ; VIN = low
6
Typ. leakage current I L(off) = f(Tj) ; Vbb = 32V ; VIN = low
2
A A
1.6
I bb(off)
4
I L(off)
C 160
1.4 1.2 1 0.8
3
2
0.6 0.4 0.2
1
0 -40 -20
0
20
40
60
80 100 120
0 -40 -20
0
20
40
60
80 100 120
C 160
Tj
Tj
Typ. initial peak short circuit current limit IL(SCp) = f(Tj) ; Vbb = 20V
18
Typ. initial short circuit shutdown time toff(SC) = f(Tj,start) ; Vbb = 20V
3
A ms
14
IL(SCp)
12 10
toff(SC)
C 160
2
1.5 8 6 4 0.5 2 0 -40 -20 0 -40 -20 1
0
20
40
60
80 100 120
0
20
40
60
80 100 120
C 160
Tj
Page 11
Tj
2004-01-27
BTS 462 T Typ. input current IIN(on/off) = f(Tj); Vbb = 13,5V; VIN = low/high VINlow 0,7V; VINhigh = 5V
14 200
Typ. input current I IN = f(VIN); V bb = 13.5V
A
A
160 10 140
150C
IIN
IIN
on
120 100
-40...25C
8
6
off
80 60 40
4
2
20 0 0
0 -40 -20
0
20
40
60
80 100 120
C 160
2
4
V VIN
8
Tj
Typ. input threshold voltage VIN(th) = f(Tj ) ; Vbb = 13,5V
2
Typ. input threshold voltage VIN(th) = f(V bb) ; Tj = 25C
2
V
1.6
on
V
on
1.6
V IN(th)
1.4 1.2 1 0.8 0.6 0.4 0.2 0 -40 -20
off
V IN(th)
1.4 1.2 1 0.8 0.6 0.4 0.2 0 5
off
0
20
40
60
80 100 120
C 160
10
15
20
25
V Vbb
35
Tj
Page 12
2004-01-27
BTS 462 T Maximum allowable load inductance for a single switch off L = f(IL); Tjstart =150C, Vbb=13.5V, RL=0
5000
Maximum allowable inductive switch-off energy, single pulse EAS = f(I L); T jstart = 150C, Vbb = 13,5V
5000
mH
4000 3500 3000 2500 2000 1500 1000 500 0 0
mJ
4000 3500
EAS
0.5 1 1.5 2 2.5 3 3.5 4 5
3000 2500 2000 1500 1000 500 0 0
L
A IL
0.5
1
1.5
2
2.5
3
3.5
4
A IL
5
Page 13
2004-01-27
BTS 462 T
Timing diagrams
Figure 1a: Vbb turn on: Figure 2b: Switching a lamp,
IN
IN
V bb
OUT
V
I
OUT
L
t
t
Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition
IN
Figure 2c: Switching an inductive load
IN
V OUT
90% t on d V /d to n 10% t d V /d to f f
V
OUT
o ff
IL
I
L
t
t
Page 14
2004-01-27
BTS 462 T
Figure 3a: Turn on into short circuit, shut down by overtemperature, restart by cooling
IN
Figure 5: Undervoltage restart of charge pump
Vo n
t I
L
I
L(SCp)
V b b( u c p )
I L(SCr)
V b ( u n d er ) b
tm t off(SC) t
Vbb
Heating up of the chip may require several milliseconds, depending on external conditions.
Figure 4: Overtemperature: Reset if Tj < T jt
IN
V
OUT
T
J
t
Page 15
2004-01-27
BTS 462 T
Package and ordering code
all dimensions in mm
Package: P-TO252-5-11
6.5 +0.15 -0.05 5.7 MAX.
1)
Ordering code: Q67060-S7402
A B 2.3 +0.05 -0.10 0.5 +0.08 -0.04
(4.24) 1 0.1
(5)
9.98 0.5 6.22 -0.2
0.8 0.15
0.9 +0.20 -0.01 0...0.15
0.15 MAX. per side
0.51 MIN.
5 x 0.6 0.1 1.14
0.5 +0.08 -0.04 0.1 B
4.56
0.25
M
AB
1) Includes mold flashes on each side. All metal surfaces tin plated, except area of cut.
Printed circuit board (FR4, 1.5mm thick, one layer 70m, 6cm2 active heatsink area ) as a reference for max. power dissipation Ptot nominal load current IL(nom) and thermal resistance R thja
Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81669 Munchen (c) Infineon Technologies AG 2001 All Rights Reserved.
Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Page 16
2004-01-27


▲Up To Search▲   

 
Price & Availability of BTS462T

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X